Covering graphs by the minimum number of equivalence relations

نویسنده

  • Noga Alon
چکیده

An equivalence graph is a vertex disjoint union of complete graphs. For a graph G, let eq(G) be the irdnimum number of equivalence subgraphs of G needed to cover all edges of G. Similarly, let cc(G) be the minimum number of complete subgraphs of G needed to cover all its edges. Let H be a graph on n vertices with ma,'dmal degree _~d (and minimal degree --~ 1), and let G=I~ be its complement. We show that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

On the Equivalence Covering Number of Splitgraphs

An equivalence graph is a disjoint union of cliques. For a graph G let eq(G) be the minimum number of equivalence subgraphs of G needed to cover all edges of G. We call eq( G) the equivalence covering number of G. It was shown in [ 81 that computing the equivalence covering number is NP-hard, even when restricted to graphs in which no two triangles have a vertex in common. We show that the equi...

متن کامل

Covering line graphs with equivalence relations

An equivalence graph is a disjoint union of cliques, and the equivalence number eq(G) of a graph G is the minimum number of equivalence subgraphs needed to cover the edges of G. We consider the equivalence number of a line graph, giving improved upper and lower bounds: 1 3 log2 log2 χ(G) < eq(L(G)) ≤ 2 log2 log2 χ(G) + 2. This disproves a recent conjecture that eq(L(G)) is at most three for tri...

متن کامل

The relaxed square property

Graph products are characterized by the existence of non-trivial equivalence relations on the edge set of a graph that satisfy a so-called square property. We investigate here a generalization, termed RSP-relations. The class of graphs with non-trivial RSP-relations in particular includes graph bundles. Furthermore, RSP-relations are intimately related with covering graph constructions. For K2,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1986